Abstract
Abstract This study was conducted to evaluate the variability of salt tolerance potentials among nine wheat genotypes representing wild and cultivated species namely Triticum turgidum subsp. durum, Triticum aestivum and Aegilops geniculata. Ionomic and photosynthetic traits were used for the screening of the studied samples when faced with four salinity levels of NaCl (0, 50, 100 and 150 mM) under green house conditions at the seedling stage. The investigated genotypes exhibited different levels of salt stress tolerance. Ionomic and photosynthetic traits underline the distinctiveness of the common wheat varieties which highlighted particular performances under salt stress conditions and showed higher tolerance potentials among the studied genotypes. Interestingly, the Vaga variety showed more ability to maintain higher K+/Na+ ratios and Pq coefficients compared with the control conditions and stable Fv/F0 and Fv/Fm ratios. Stable behaviour was exhibited by wild Aegilops accessions while durum wheat varieties have been shown to be more sensitive to salt stress. Further investigations were required for the common wheat variety Vaga, which could be useful for successful breeding and biotechnological improvement strategies concerning wheat species.
Highlights
This study was conducted to evaluate the variability of salt tolerance potentials among nine wheat genotypes representing wild and cultivated species namely Triticum turgidum subsp. durum, Triticum aestivum and Aegilops geniculata
The present study investigates the variability of the salt stress tolerance ability among wild, landraces and modern varieties of wheat germplasms at an early developmental stage, based on ionomic and photosynthetic traits
The variability of salt stress response induced by different doses of NaCl (0, 50, 100 and 150 mM NaCl) at the juvenile seedling stage was addressed in this study, based on a sample of nine genotypes of wild and cultivated wheat, representing wild accessions, local landraces and modern varieties
Summary
Abstract: This study was conducted to evaluate the variability of salt tolerance potentials among nine wheat genotypes representing wild and cultivated species namely Triticum turgidum subsp. durum, Triticum aestivum and Aegilops geniculata. Abstract: This study was conducted to evaluate the variability of salt tolerance potentials among nine wheat genotypes representing wild and cultivated species namely Triticum turgidum subsp. Ionomic and photosynthetic traits were used for the screening of the studied samples when faced with four salinity levels of NaCl (0, 50, 100 and 150 mM) under green house conditions at the seedling stage. The investigated genotypes exhibited different levels of salt stress tolerance. Ionomic and photosynthetic traits underline the distinctiveness of the common wheat varieties which highlighted particular performances under salt stress conditions and showed higher tolerance potentials among the studied genotypes. Stable behaviour was exhibited by wild Aegilops accessions while durum wheat varieties have been shown to be more sensitive to salt stress. Further investigations were required for the common wheat variety Vaga, which could be useful for successful breeding and biotechnological improvement strategies concerning wheat species
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have