Abstract

Successful cell replication requires both cell cycle completion and accurate chromosomal segregation. The tumor suppressor BRCA2 is positioned to influence both of these outcomes, and thereby influence genomic integrity, during meiotic and mitotic cell cycles. Accordingly, mutations in BRCA2 induce chromosomal abnormalities and disrupt cell cycle progression in both germ cells and somatic cells. Despite these findings, aneuploidy is not more prevalent in BRCA2-associated versus non-BRCA2-associated human cancers. More puzzlingly, diploidy in BRCA2-associated cancers is a negative prognostic factor, unlike non-BRCA2-associated cancers and many other human cancers. We used a brca2-mutant/tp53-mutant cancer-prone zebrafish model to explore the impact of BRCA2 mutation on cell cycle progression, ploidy, and cancer-associated mortality by performing DNA content/cell cycle analysis on zebrafish germ cells, somatic cells, and cancer cells. First, we determined that combined brca2/tp53 mutations uniquely disrupt meiotic progression. Second, we determined that sex significantly influences ploidy outcome in zebrafish cancers. Third, we determined that brca2 mutation and female sex each significantly reduce survival time in cancer-bearing zebrafish. Finally, we provide evidence to support a link between BRCA2 mutation, tumor diploidy, and poor survival outcome. These outcomes underscore the utility of this model for studying BRCA2-associated genomic aberrations in normal and cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.