Abstract
Evaluation of genotype × environment interaction (GEI) is an important component of the variety selection process in multi-environment trials. The objectives of this study were first to analyze GEI on seed yield of 18 spine safflower genotypes grown for three consecutive seasons (2008–2011) at three locations, representative of rainfed winter safflower growing areas of Iran, by the additive main effects and multiplicative interaction (AMMI) model, and second to compare AMMI-derived stability statistics with several stability different methods, and two stability analysis approaches the yield-stability (Ysi) and the GGE (genotype + genotype × environment) biplot that are widely used to identify high-yielding and stable genotypes. The results of the AMMI analysis showed that main effects due to genotype, environment, and GEI as well as first six interaction principle component axes (IPCA1 to 6) were significant (P < 0.01). According to most stability statistics of AMMI analyses, genotypes G5 and G14 were the most stable genotypes across environments. According to the adjusted stability variance (s2), the high-yielding genotype, G2, was unstable due to the heterogeneity caused by environmental index. Based on the definition of stable genotypes by regression method (b = 1, S d 2 = 0), genotypes G11, G9, G14, G3, G12 and G13 had average stability for seed yield. Stability parameters of Tai indicated that genotype G5 had specific adaptability to unfavorable environments. The GGE biplot and the Ysi statistic gave similar results in identifying genotype G2 (PI-209295) as the best one to release for rainfed conditions of Iran. The factor analysis was used for grouping all stability parameters. The first factor separated static and dynamic concepts of stability, in which the Ysi and GGED (i.e., the distance from the markers of individual genotypes to the ideal genotype) parameters had a dynamic concept of stability, and the other remaining parameters had static concept of stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have