Abstract
A growing number of non-MHC-encoded class I-related molecules have been shown to perform diverse, yet essential, functions. These include T cell presentation of bacterially derived glycolipidic Ags by CD1, transcytosis of maternal IgG by the neonatal Fc receptor, enriched presence and plausible function within exocrine fluids of the Zn-alpha2-glycoprotein, subversion of NK cytolytic activity by the CMV UL18 gene product, and, finally, crucial involvement in iron homeostasis of the HFE gene. A recently described member of this family is the MHC class-I related (MR1) gene. The most notable feature of MR1 is undoubtedly its relatively high degree of sequence similarity to the MHC-encoded classical class I genes. The human chromosome 1q25.3 MR1 locus gives rise not only to the originally reported 1,263-bp cDNA clone encoding a putative 341-amino acid polypeptide chain, but to many additional transcripts in various tissues as well. Here we define the molecular identity of all human and murine MR1 isoforms generated through a complex scenario of alternative splicing, some encoding secretory variants lacking the Ig-like alpha3 domain. Moreover, we show ubiquitous transcription of these MR1 variants in several major cell lineages. We additionally report the complete 18,769-bp genomic structure of the MR1 locus, localize the murine orthologue to a syntenic segment of chromosome 1, and provide evidence for conservation of a single-copy MR1 gene throughout mammalian evolution. The 90% sequence identity between the human and mouse MR1 putative ligand binding domains together with the ubiquitous expression of this gene favor broad immunobiologic relevance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have