Abstract

The human gut microbiota (HGM) have an impact on host health and disease. Amino acids are building blocks of proteins and peptides, also serving as precursors of many essential metabolites including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for these nutrients (prototrophs). Metabolite exchange between auxotrophs and prototrophs affects microbial community structure. Previous studies of amino acid biosynthetic phenotypes were limited to model species or narrow taxonomic groups of bacteria. We analyzed over 2800 genomes representing 823 cultured HGM species with the aim to reconstruct biosynthetic pathways for proteinogenic amino acids. The genome context analysis of incomplete pathway variants allowed us to identify new potential enzyme variants in amino acid biosynthetic pathways. We further classified the studied organisms with respect to their pathway variants and inferred their prototrophic vs. auxotrophic phenotypes. A cross-species comparison was applied to assess the extent of conservation of the assigned phenotypes at distinct taxonomic levels. The obtained reference collection of binary metabolic phenotypes was used for predictive metabolic profiling of HGM samples from several large metagenomic datasets. The established approach for metabolic phenotype profiling will be useful for prediction of overall metabolic properties, interactions, and responses of HGM microbiomes as a function of dietary variations, dysbiosis and other perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.