Abstract

Psychrophily is a phenotype describing microbial growth at low temperatures; elucidating the biomolecular and genomic adaptations necessary for survival in the cold is important for understanding life in extreme environments on Earth and in outer space. We used comparative genomics and temperature growth experiments of bacteria from the family Colwelliaceae to identify genomic factors correlated with optimal growth temperature (OGT). A phylogenomic analysis of 67 public and 39 newly sequenced strains revealed three main clades of Colwelliaceae. Temperature growth experiments revealed significant differences in mean OGT by clade, wherein strains of Colwelliaceae had similar growth rates at -1°C but varied in their ability to tolerate 17°C. Using amino acid compositional indices, a multiple linear regression model was constructed to predict the OGT of these organisms (RMSE 5.2°C). Investigation of Colwelliaceae functional genes revealed a putative cold-adaptive gene cassette that was present in psychrophilic strains but absent in a closely related strain with a significantly higher OGT. This study also presents genomic evidence suggesting that the clade of Colwelliaceae containing Colwellia hornerae should be investigated as a new genus. These contributions offer key insights into the psychrophily phenotype and its underlying genomic foundation in the family Colwelliaceae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.