Abstract

Poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapies have been found to be particularly effective in tumors that harbor deleterious germline or somatic mutations in the BRCA1 or BRCA2 genes, the products of which contribute to the conservative homologous recombination repair of DNA double-strand breaks. Nonetheless, several setbacks in clinical trial settings have highlighted some of the issues surrounding the investigation of PARP inhibitors, especially the identification of patients who stand to benefit from such drugs. One potential approach to finding this patient subpopulation is to examine the tumor DNA for evidence of a homologous recombination defect. However, although the genomes of many breast and ovarian cancers are replete with aberrations, the presence of numerous factors able to shape the genomic landscape means that only some of the observed DNA abnormalities are the outcome of a cancer cell’s inability to faithfully repair DNA double-strand breaks. Consequently, recently developed methods for comprehensively capturing the diverse ways in which homologous recombination deficiencies may arise beyond BRCA1/2 mutation have used DNA microarray and sequencing data to account for potentially confounding features in the genome. Scores capturing telomeric allelic imbalance, loss of heterozygosity (LOH) and large scale transition score, as well as the total number of coding mutations are measures that summarize the total burden of certain forms of genomic abnormality. By contrast, other studies have comprehensively catalogued different types of mutational pattern and their relative contributions to a given tumor sample. Although at least one study to explore the use of the LOH scar in a prospective clinical trial of a PARP inhibitor in ovarian cancer is under way, limitations that result in a relatively low positive predictive value for these biomarkers remain. Tumors whose genome has undergone one or more events that restore high-fidelity homologous recombination are likely to be misclassified as double-strand break repair-deficient and thereby sensitive to PARP inhibitors and DNA damaging chemotherapies as a result of prior repair deficiency and its genomic scarring. Therefore, we propose that integration of a genomic scar-based biomarker with a marker of resistance in a high genomic scarring burden context may improve the performance of any companion diagnostic for PARP inhibitors.

Highlights

  • Cancer is a disease of the genome

  • We will focus on the latter application and, in particular, on how the genomic scars that are carved out by a deficiency in a DNA repair process known as homologous recombination (HR) may be measured and used as biomarkers or companion diagnostics for response to platinum-based chemotherapies and synthetic lethal agents such as the poly (ADP-ribose) polymerase (PARP) inhibitors

  • Conclusions targeting DNA repair deficiencies in cancer has been a mainstay of the therapeutic oncology armamentarium for decades, this has been more through serendipity and observation of average effects in populations than by mechanistic DNA repair activity-informed design

Read more

Summary

Introduction

Cancer is a disease of the genome. In certain types of cancers, a handful of mutations drive and accompany carcinogenesis; in others, tumor growth unfolds in the context of widespread genomic turmoil [1]. Structural chromosomal instability scars from microarrays By training a classifier on bacterial artificial chromosome and oligonucleotide array comparative genomic hybridization (aCGH) data from BRCA1/2 germline mutation statusannotated breast cancer data sets, several studies have demonstrated the utility of genome-wide information in identifying HR-defective tumors, which they linked to better platinum response rates [40,41,42]. These studies found that BRCA1 and BRCA2 germline-mutated cancers harbored a greater number of break points and copy number changes. Tumors with mutation, promoter methylation, or low levels of mRNA for either BRCA1 or BRCA2 were demonstrated to have a higher burden of NtAi than tumors without BRCA1/2 deficiency

Provide prognostic information
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.