Abstract

ObjectiveTo analyze whole exome sequencing (WES) data on ovarian clear cell carcinoma (OCCC) in Korean patients via the technique of next generation sequencing (NGS). Genomic profiles were compared between endometriosis-associated OCCC (EMS-OCCC) and Non-EMS-OCCC. MethodsWe used serum samples and cancer tissues, stored at the Seoul National University Hospital Human Biobank, that were initially collected from women diagnosed with OCCC between 2012 and 2016. In total, 15 patients were enrolled: 5 with pathologically confirmed EMS-OCCC and 10 with Non-EMS-OCCC. We performed NGS WES on 15 fresh frozen OCCC tissues and matched serum samples, enabling comprehensive genomic characterization of OCCC. ResultsOCCC was characterized by complex genomic alterations, with a median of 178 exonic mutations (range, 111-25,798) and a median of 343 somatic copy number variations (range, 43-1,820) per tumor sample. In all, 54 somatic mutations were discovered across 14 genes, including PIK3CA (40%), ARID1A (40%), and KRAS (20%) in the 15 Korean OCCCs. Copy number gains in NTRK1 (33%), MYC (40%), and GNAS (47%) and copy number losses in TET2 (73%), TSC1 (67%), BRCA2 (60%), and SMAD4 (47%) were frequent. The significantly altered pathways were associated with proliferation and survival (including the PI3K/AKT, TP53, and ERBB2 pathways) in 87% of OCCCs and with chromatin remodeling in 47% of OCCCs. No significant differences in frequencies of genetic alterations were detected between EMS-OCCC and Non-EMS-OCCC groups. ConclusionWe successfully characterized the genomic landscape of 15 Korean patients with OCCC. We identified potential therapeutic targets for the treatment of this malignancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call