Abstract

Pediococcus pentosaceus, which often occurs in fermented foods, is characterized by numerous positive effects on the human health, such as the presence of possible probiotic abilities, the reduction of cholesterol levels, satisfactory antimicrobial activity, and certain therapeutic functions. This study was conducted with the goal of describing the genomic content of Pediococcus pentosaceus ENM104, a strain known for its inhibitory effects against pathogenic bacteria and its remarkable probiotic potential, including the induction of significant reductions in cholesterol levels and the production of γ-aminobutyric acid (GABA). The P. pentosaceus ENM104 chromosome is circular. The chromosome is 1,734,928 bp with a GC content of 37.2%. P. pentosaceus also harbors a circular plasmid, pENM104, that is 71,811 bp with a GC content of 38.1%. Functional annotations identified numerous genes associated with probiotic traits, including those involved in stress adaptation (e.g., heat stress: htpX, dnaK, and dnaJ), bile tolerance (e.g., ppaC), vitamin biosynthesis (e.g., ribU, ribZ, ribF, and btuD), immunomodulation (e.g., dltA, dltC, and dltD), and bacteriocin production (e.g., pedA). Notably, genes responsible for lowering cholesterol levels (bile salt hydrolase, bsh) and GABA synthesis (glutamate/GABA antiporter, gadC) were also identified. The in vitro assay results using cell-free supernatants of P. pentosaceus ENM104 revealed antibacterial activity against carbapenem-resistant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, and the inhibition zone diameter increased progressively over time. This comprehensive study provides valuable insights into the molecular characteristics of P. pentosaceus ENM104, emphasizing its potential as a probiotic. Its notable cholesterol-lowering, GABA-producing, and antimicrobial capabilities suggest promising applications in the pharmaceutical and food industries. Future research should focus on further exploring these functional properties and assessing the strain’s efficacy in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.