Abstract

Raised serum cholesterol concentration is a well-established risk factor in cardiovascular disease. In addition, genetic load may have an indirect influence on cardiovascular risk. Plant-based sterol-supplemented foods are recommended to help reduce the serum low-density lipoprotein cholesterol level. The objective was to analyse the influence of different polymorphisms in hypercholesterolemia patients following a dietary treatment with plant sterols. A randomised double-blind cross-over controlled clinical trial was carried out in 45 people (25 women). Commercial milk, containing 2.24 g of sterols, was ingested daily during a 3-week period, and then the same amount of skim milk, without sterols, was consumed daily during the 3-week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. Genes LIPC C-514T and APOA5 C56G are Ser19Trp carriers and greatly benefit from sterol intake in the diet. LIPC C-514T TT homozygous carriers had lower low-density lipoprotein cholesterol (LDL-c) levels than CC homozygote and CT heterozygote carriers after the ingestion of plant sterols (p = 0.001). These two genes also showed statistically significant changes in total cholesterol levels (p = 0.025; p = 0.005), and no significant changes in high-density lipoprotein (HDL) cholesterol levels (p = 0.032; p = 0.003), respectively. No statistically significant differences were observed for other genes. Further studies are needed to establish which genotype combinations would be the most protective against hypercholesterolemia.

Highlights

  • Human health is a result of complex interactions between genetic predisposition and the environment in which genes manifest

  • The aim of this study was to analyse the influence of different polymorphisms in hypercholesterolemia patients following dietary treatment with plant sterols

  • Clifton et al (2004) [27], who analysed the differences of using plant sterols in different matrices, concluded that the matrix that had a better effect in reducing low-density lipoprotein cholesterol (LDL-c) was obtained in milk

Read more

Summary

Introduction

Human health is a result of complex interactions between genetic predisposition and the environment in which genes manifest. It has long been recognised that individual differences in genetic variation influence the association between dietary recommendations and health, which is yet to be reflected in the dietary guidelines. Identifying the interplay between genes and dietary patterns holds promise for a new era of personalised medicine, whereby the recommended diet for best health is tailored towards how an individual’s metabolism is genetically predisposed to respond to dietary intake [1]. Nutrigenomics explores the interaction between genetic factors and dietary nutrient intake regarding various disease phenotypes and general health [2], with the aim to provide more personalised dietary advice [3,4]. Through the use of genome-wide association studies, genetic variations (single nucleotide polymorphisms) have been identified as genetic factors, making it more likely to determine individual disease predisposition [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call