Abstract

Recombination is a major driver of evolution in bacterial populations, because it can spread and combine independently evolved beneficial mutations. Recombinant lineages of bacterial pathogens of plants are typically associated with the colonization of novel hosts and the emergence of new diseases. Here we show that recombination between evolutionarily and phenotypically distinct plant-pathogenic lineages generated recombinant lineages with unique combinations of pathogenicity and virulence factors. Xanthomonas euvesicatoria and Xanthomonas perforans are two closely related lineages causing bacterial spot disease on tomato and pepper worldwide. We sequenced the genomes of atypical strains collected from tomato in Nigeria and observed recombination in the type III secretion system and effector genes, which showed alleles from both X. euvesicatoria and X. perforans Wider horizontal gene transfer was indicated by the fact that the lipopolysaccharide cluster of one strain was most similar to that of a distantly related Xanthomonas pathogen of barley. This strain and others have experienced extensive genomewide homologous recombination, and both species exhibited dynamic open pangenomes. Variation in effector gene repertoires within and between species must be taken into consideration when one is breeding tomatoes for disease resistance. Resistance breeding strategies that target specific effectors must consider possibly dramatic variation in bacterial spot populations across global production regions, as illustrated by the recombinant strains observed here.IMPORTANCE The pathogens that cause bacterial spot of tomato and pepper are extensively studied models of plant-microbe interactions and cause problematic disease worldwide. Atypical bacterial spot strains collected from tomato in Nigeria, and other strains from Italy, India, and Florida, showed evidence of genomewide recombination that generated genetically distinct pathogenic lineages. The strains from Nigeria and Italy were found to have a mix of type III secretion system genes from X. perforans and X. euvesicatoria, as well as effectors from Xanthomonas gardneri These genes and effectors are important in the establishment of disease, and effectors are common targets of resistance breeding. Our findings point to global diversity in the genomes of bacterial spot pathogens, which is likely to affect the host-pathogen interaction and influence management decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.