Abstract

BackgroundIncreasing marker density was proposed to have potential to improve the accuracy of genomic prediction for quantitative traits; whole-sequence data is expected to give the best accuracy of prediction, since all causal mutations that underlie a trait are expected to be included. However, in cattle and chicken, this assumption is not supported by empirical studies. Our objective was to compare the accuracy of genomic prediction of feed efficiency component traits in Duroc pigs using single nucleotide polymorphism (SNP) panels of 80K, imputed 650K, and whole-genome sequence variants using GBLUP, BayesB and BayesRC methods, with the ultimate purpose to determine the optimal method to increase genetic gain for feed efficiency in pigs.ResultsPhenotypes of average daily feed intake (ADFI), average daily gain (ADG), ultrasound backfat depth (FAT), and loin muscle depth (LMD) were available for 1363 Duroc boars from a commercial breeding program. Genotype imputation accuracies reached 92.1% from 80K to 650K and 85.6% from 650K to whole-genome sequence variants. Average accuracies across methods and marker densities of genomic prediction of ADFI, FAT, LMD and ADG were 0.40, 0.65, 0.30 and 0.15, respectively. For ADFI and FAT, BayesB outperformed GBLUP, but increasing marker density had little advantage for genomic prediction. For ADG and LMD, GBLUP outperformed BayesB, while BayesRC based on whole-genome sequence data gave the best accuracies and reached up to 0.35 for LMD and 0.25 for ADG.ConclusionsUse of genomic information was beneficial for prediction of ADFI and FAT but not for that of ADG and LMD compared to pedigree-based estimates. BayesB based on 80K SNPs gave the best genomic prediction accuracy for ADFI and FAT, while BayesRC based on whole-genome sequence data performed best for ADG and LMD. We suggest that these differences between traits in the effect of marker density and method on accuracy of genomic prediction are mainly due to the underlying genetic architecture of the traits.

Highlights

  • Increasing marker density was proposed to have potential to improve the accuracy of genomic prediction for quantitative traits; whole-sequence data is expected to give the best accuracy of prediction, since all causal mutations that underlie a trait are expected to be included

  • For average daily gain (ADG) and loin muscle depth (LMD), GBLUP outperformed BayesB, while BayesRC based on whole-genome sequence data gave the best accuracies and reached up to 0.35 for LMD and 0.25 for ADG

  • Use of genomic information was beneficial for prediction of average daily feed intake (ADFI) and FAT but not for that of ADG and LMD compared to pedigree-based estimates

Read more

Summary

Introduction

Increasing marker density was proposed to have potential to improve the accuracy of genomic prediction for quantitative traits; whole-sequence data is expected to give the best accuracy of prediction, since all causal mutations that underlie a trait are expected to be included. Unlike dairy cattle, where the biggest impact is on reducing generation interval [8], the largest benefit for pigs is in increasing the accuracy of selection for traits such as feed intake. Many factors can influence the accuracy of genomic prediction, including the genetic architecture of the traits, the statistical method applied [13, 22], marker density, LD between QTL and SNPs [16], effective population size [19, 23, 24], size of the reference population, relatedness of selection candidates with individuals in the training data [13, 22, 25], and imputation accuracy of marker genotypes [14]. The availability of higher density SNP panels and sequence information for pigs provided the opportunity to examine this for feed efficiency in a commercial Duroc breeding population

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call