Abstract

Genus Niallia has recently been separated taxonomic group from the Bacillus based on conserved signature indels in the genome. Unlike bioremediation, its role in plant biomass hydrolysis has not garnered considerable attention. The present study investigates the genomic potential of a novel Niallia sp. CRN 25 for applications in lignocellulose hydrolysis, significant enzyme production, and bioremediation. The CRN 25 strain exhibits xylosidase, cellobiosidase, α-arabinosidase, and α-D-galactosidase activity as 0.03U/ml whereas β-D-glucosidase and glucuronidase as 0.06 U/ml and 0.01U/ml, respectively. Further genome sequencing reveals nine copies of GH43 gene coding for hemicellulose-specific xylanase enzyme attached to the CBM 6 domain for increased processivity. The presence of β-glucosidase and β-galactosidase indicates the possible application of CRN 25 in facilitating the valorization of plant biomass into value-added products. Apart from this, genes of FMN-dependent NADH-azoreductase, cytochrome P450, and nitrate reductase, playing a crucial role in bioremediation processes, were annotated. Biosynthetic gene clusters (BGCs), responsible for synthesizing specialized metabolites of terpenes and lasso peptides, were also found in the genome. Conclusively genomic sketch of Niallia sp. CRN 25 reveals versatile metabolic potential for diverse environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call