Abstract
Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd–4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, blaCTX–M–14, blaCTX–M–32 and blaSHV–12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolates.
Highlights
Multidrug-resistant Enterobacteriaceae, such as Escherichia coli, represent a threat to both human and veterinary health
The 35 E. coli were selected from 499 diarrheagenic isolates of different geographic areas of Spain (2006–2016) (García et al, 2018; García-Meniño et al, 2018), taking into account the results of prevalence and significant association observed between pathotypes, presence of mcr and certain serogroups
Swine colibacillosis control has been traditionally managed through the extensive use of antibiotics
Summary
Multidrug-resistant Enterobacteriaceae, such as Escherichia coli, represent a threat to both human and veterinary health. E. coli has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. PWD results in significant economic losses for the pig industry due to costs derived of treatment and handling, decreased weight gain, and mortality. These circumstances have promoted the use and abuse of antibiotics in intensive farming (Luppi, 2017; Rhouma et al, 2017). Specific regulations have been set up in Europe due to the concern that colistin resistance could be transmitted from food-production animals to humans which makes necessary the investigation of sustainable alternatives to antimicrobials (EUROPEAN COMMISSION, 2018)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have