Abstract
COVID-19 has significantly affected hospital infection prevention and control (IPC) practices, especially in intensive care units (ICUs). This frequently caused dissemination of multidrug-resistant organisms (MDROs), including carbapenem-resistant Acinetobacter baumannii (CRAB). Here, we report the management of a CRAB outbreak in a large ICU COVID-19 hub Hospital in Italy, together with retrospective genotypic analysis by whole-genome sequencing (WGS). Bacterial strains obtained from severe COVID-19 mechanically ventilated patients diagnosed with CRAB infection or colonization between October 2020 and May 2021 were analyzed by WGS to assess antimicrobial resistance and virulence genes, along with mobile genetic elements. Phylogenetic analysis in combination with epidemiological data was used to identify putative transmission chains. CRAB infections and colonization were diagnosed in 14/40 (35%) and 26/40 (65%) cases, respectively, with isolation within 48 h from admission in 7 cases (17.5%). All CRAB strains belonged to Pasteur sequence type 2 (ST2) and 5 different Oxford STs and presented blaOXA-23 gene-carrying Tn2006 transposons. Phylogenetic analysis revealed the existence of four transmission chains inside and among ICUs, circulating mainly between November and January 2021. A tailored IPC strategy was composed of a 5-point bundle, including ICU modules' temporary conversion to CRAB-ICUs and dynamic reopening, with limited impact on ICU admission rate. After its implementation, no CRAB transmission chains were detected. Our study underlies the potentiality of integrating classical epidemiological studies with genomic investigation to identify transmission routes during outbreaks, which could represent a valuable tool to ensure IPC strategies and prevent the spread of MDROs. IMPORTANCE Infection prevention and control (IPC) practices are of paramount importance for preventing the spread of multidrug-resistant organisms (MDROs) in hospitals, especially in the intensive care unit (ICU). Whole-genome sequencing (WGS) is seen as a promising tool for IPC, but its employment is currently still limited. COVID-19 pandemics have posed dramatic challenges in IPC practices, causing worldwide several outbreaks of MDROs, including carbapenem-resistant Acinetobacter baumannii (CRAB). We present the management of a CRAB outbreak in a large ICU COVID-19 hub hospital in Italy using a tailored IPC strategy that allowed us to contain CRAB transmission while preventing ICU closure during a critical pandemic period. The analysis of clinical and epidemiological data coupled with retrospective genotypic analysis by WGS identified different putative transmission chains and confirmed the effectiveness of the IPC strategy implemented. This could be a promising approach for future IPC strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.