Abstract

The degree of linkage disequilibrium (LD) between markers differs depending on the location of the genome; this difference biases genetic evaluation by genomic best linear unbiased prediction (GBLUP). To correct this bias, we used three GBLUP methods reflecting the degree of LD (GBLUP-LD). In the three GBLUP-LD methods, genomic relationship matrices were conducted from single nucleotide polymorphism markers weighted according to local LD levels. The predictive abilities of GBLUP-LD were investigated by estimating variance components and assessing the accuracies of estimated breeding values using simulation data. When quantitative trait loci (QTL) were located at weak LD regions, the predictive abilities of the three GBLUP-LD methods were superior to those of GBLUP and Bayesian lasso except when the number of QTL was small. In particular, the superiority of GBLUP-LD increased with decreasing trait heritability. The rates of QTL at weak LD regions would increase when selection by GBLUP continues; this consequently decreases the predictive ability of GBLUP. Thus, the GBLUP-LD could be applicable for populations selected by GBLUP for a long time. However, if QTL were located at strong LD regions, the accuracies of three GBLUP-LD methods were lower than GBLUP and Bayesian lasso.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.