Abstract
A major problem in the treatment of leukemia is the development of drug resistance to chemotherapeutic agents. To determine the ex vivo drug resistance profile to anthracyclines, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cytotoxicity assay was performed on mononuclear cells obtained from 155 patients with acute lymphoblastic leukemia (ALL) or acute myeloblastic leukemia (AML). Gene expression profiles (for 51 patients with ALL and 16 with AML) were prepared on the basis of cRNA hybridization to oligonucleotide arrays of the human genome (Affymetrix). Hierarchical clustering, assignment location and biological function were investigated during the correlation analysis for identified probe sets. Comparative genomic hybridization (CGH) array profiles (34 patients with ALL and 12 with AML) were prepared on the basis of DNA hybridization to oligonucleotide arrays of the human genome (Agilent). The validation of the array results was performed by a quantitative reverse transcriptase polymerase chain reaction. The collected expression and CGH microarray experiment results indicate that the ITGB2, SCL6A7, CASP1 and DUSP genes may comprise a resistance marker for acute leukemia cells correlated with anthracyclines. Moreover, there were also identified chromosome rearrangements associated with drug resistance, such as del5q32-35.3 and amp8p12-p11.21. Precise genes, as well as genome aberrations, might be classified as targets in therapy. In AML, the resistance of blasts to idarubicin and mitoxantrone may reflect an impaired integrin pathway. In ALL, the development of resistance is caused by the inhibition of B and T cell activation. Copyright © 2016 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have