Abstract
Functional genome research, including gene transcriptional and posttranslational modifications of histones, can benefit greatly from a high-quality genome assembly. Histone modification plays a significant role in modulating the responses to abiotic stress in plants. However, there are limited reports on the involvement of dynamic changes in histone modification in cold stress response in upland cotton. In this study, the genome of an elite accession, YM11, with considerable cold stress tolerance was de novo assembled, which yielded a genome of 2343.06 Mb with a contig N50 of 88.96 Mb, and a total of 73,821 protein-coding gene models were annotated. Comparisons among YM11 and five Gossypium allopolyploid cotton assemblies highlighted a large amount of structural variations and presence/absence variations. We analyzed transcriptome and metabolome changes in YM11 seedlings subjected to cold stress. Using the CUT&Tag method, genome-wide H3K4me3 and H3K9ac modification patterns and effect of histone changes on gene expression were profiled during cold stress. Significant and consistently changing histone modifications and the gene expressions were screened, of which transcription factors (TFs) were highlighted. Our results suggest a positive correlation between the changes in H3K4me3, H3K9ac modifications and cold stress-responsive gene activation. This genome assembly and comprehensive analysis of genome-wide histone modifications and gene expression provide insights into the genomic variation and epigenetic responses to cold stress in upland cotton.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have