Abstract
Genetic sexing strains (GSS) are an important tool in support of sterile insect technique (SIT) applications against insect pests and disease vectors. The yet unknown temperature-sensitive lethal (tsl) gene and the recently identified white pupae (wp) gene have been used as selectable markers in the most successful GSS developed so far, the Ceratitis capitata (medfly) VIENNA 8 GSS. The molecular identification of the tsl gene may open the way for its use as a marker for the development of GSS in other insect pests and disease vectors of SIT importance. Prior studies have already shown that the tsl gene is located on the right arm of chromosome 5, between the wp and Zw loci (tsl genomic region). In the present study, we used genomic, transcriptomic, bioinformatic, and cytogenetic approaches to characterize and analyze this genomic region in wild-type and tsl mutant medfly strains. Our results suggested the presence of 561 genes, with 322 of them carrying SNPs and/or insertion-deletion (indel) mutations in the tsl genomic region. Furthermore, comparative transcriptomic analysis indicated the presence of 32 differentially expressed genes, and bioinformatic analysis revealed the presence of 33 orthologs with a described heat-sensitive phenotype of Drosophila melanogaster in this region. These data can be used in functional genetic studies to identify the tsl gene(s) and the causal mutation(s) responsible for the temperature-sensitive lethal phenotype in medfly, and potentially additional genes causing a similar phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.