Abstract
BackgroundOne of the most important global pathogens infecting all age groups is Streptococcus pneumoniae (the ‘pneumococcus’). Pneumococci reside in the paediatric nasopharynx, where they compete for space and resources, and one competition strategy is to produce a bacteriocin (antimicrobial peptide or protein) to attack other bacteria and an immunity protein to protect against self-destruction. We analysed a collection of 336 diverse pneumococcal genomes dating from 1916 onwards, identified bacteriocin cassettes, detailed their genetic composition and sequence diversity, and evaluated the data in the context of the pneumococcal population structure.ResultsWe found that all genomes maintained a blp bacteriocin cassette and we identified several novel blp cassettes and genes. The composition of the ‘bacteriocin/immunity region’ of the blp cassette was highly variable: one cassette possessed six bacteriocin genes and eight putative immunity genes, whereas another cassette had only one of each. Both widely-distributed and highly clonal blp cassettes were identified. Most surprisingly, one-third of pneumococcal genomes also possessed a cassette encoding a novel circular bacteriocin that we called pneumocyclicin, which shared a similar genetic organisation to well-characterised circular bacteriocin cassettes in other bacterial species. Pneumocyclicin cassettes were mainly of one genetic cluster and largely found among seven major pneumococcal clonal complexes.ConclusionsThese detailed genomic analyses revealed a novel pneumocyclicin cassette and a wide variety of blp bacteriocin cassettes, suggesting that competition in the nasopharynx is a complex biological phenomenon.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1729-4) contains supplementary material, which is available to authorized users.
Highlights
One of the most important global pathogens infecting all age groups is Streptococcus pneumoniae
In the literature there are two sets of gene names associated with these cassettes in pneumococci and we have identified additional novel genes in this study, adding to the confusion around nomenclature
All Categories had a number of genes in common at the start and end of the cassette, including the regulatory, ABC transporter and CAAX protease genes, and a membrane protein gene putatively associated with immunity (Tables 1 and 2)
Summary
One of the most important global pathogens infecting all age groups is Streptococcus pneumoniae (the ‘pneumococcus’). Pneumococci reside in the paediatric nasopharynx, where they compete for space and resources, and one competition strategy is to produce a bacteriocin (antimicrobial peptide or protein) to attack other bacteria and an immunity protein to protect against self-destruction. The pneumococcus is among the most important pathogens worldwide: in 2000, ~14.5 million estimated cases of life-threatening pneumococcal diseases like pneumonia, bacteraemia and meningitis occurred and ~826,000 children died [1]. The composition of colonising pneumococci fluctuates over time, indicating the importance of intraspecies competition in pneumococcal ecology [12, 13]. Understanding the dynamics of competition is important in the context of understanding how perturbations such as vaccine introduction affect the pneumococcal population structure and result in changes in the Bogaardt et al BMC Genomics (2015) 16:554 pneumococci competing for space and nutrients in the nasopharynx
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.