Abstract

Fifty-six QTL for flour color-related traits and polyphenol oxidase activity were identified using a genome-wide linkage mapping of data from a RIL population derived from a Gaocheng 8901/Zhoumai 16 cross. Flour color-related traits, including L*, a*, b*, yellow pigment content (YPC), and polyphenol oxidase (PPO) activity are important parameters influencing the quality of wheat end-use products. Mapping quantitative trait loci (QTL) for these traits and characterization of candidate genes are important for improving wheat quality. The aims of this study were to identify QTL for flour color-related traits and PPO activity and to characterize candidate genes using a high-density genetic linkage map in a common wheat recombinant inbred line (RIL) population derived from a cross between Gaocheng 8901 and Zhoumai 16. A linkage map was constructed by genotyping the RILs with the wheat 90 K iSelect array. Fifty-six QTL were mapped on 35 chromosome regions on homoeologous groups 1, 2, 5 and 7 chromosomes, and chromosomes 3B, 4A, 4B and 6B. Four QTL were for PPO activity, and the others were for flour color-related traits. Compared with previous studies, five QTL for a*, two for b*, one for L*, one for YPC and one for PPO activity were new. The new QTL on chromosome 2DL was involved in both a* and YPC, and another on chromosome 7DS affected both a* and L*. The scan for SNP sequences tightly linked to QTL for flour color-related traits against the wheat and/or related cereals genomes identified six candidate genes significantly related to these traits, and five of them were associated with the terpenoid backbone biosynthesis pathway. The high-density genetic linkage map of Gaocheng 8901/Zhoumai 16 represents a useful tool to identify QTL for important quality traits and candidate genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call