Abstract
BackgroundZF-HD is a family of genes that play an important role in plant growth, development, some studies have found that after overexpression AtZHD1 in Arabidopsis thaliana, florescence advance, the seeds get bigger and the life span of seeds is prolonged, moreover, ZF-HD genes are also participate in responding to adversity stress. The whole genome of the ZF-HD gene family has been studied in several model plants, such as Arabidopsis thaliana and rice. However, there has been little research on the ZF-HD genes in Tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of Tartary buckwheat allows us to study the tissue and expression profiles of the ZF-HD gene family in Tartary buckwheat on a genome-wide basis.ResultsIn this study, the whole genome and expression profile of the ZF-HD gene family were analyzed for the first time in Tartary buckwheat. We identified 20 FtZF-HD genes and divided them into MIF and ZHD subfamilies according to phylogeny. The ZHD genes were divided into 5 subfamilies. Twenty FtZF-HD genes were distributed on 7 chromosomes, and almost all the genes had no introns. We detected seven pairs of chromosomes with fragment repeats, but no tandem repeats were detected. In different tissues and at different fruit development stages, the FtZF-HD genes obtained by a real-time quantitative PCR analysis showed obvious expression patterns.ConclusionsIn this study, 20 FtZF-HD genes were identified in Tartary buckwheat, and the structures, evolution and expression patterns of the proteins were studied. Our findings provide a valuable basis for further analysis of the biological function of the ZF-HD gene family. Our study also laid a foundation for the improvement of Tartary buckwheat crops.
Highlights
zinc finger homeodomain (ZF-HD) is a family of genes that play an important role in plant growth, development, some studies have found that after overexpression AtZHD1 in Arabidopsis thaliana, florescence advance, the seeds get bigger and the life span of seeds is prolonged, ZF-HD genes are participate in responding to adversity stress
Identification of the FtZF-HD genes in Tartary buckwheat To identify the FtZF-HD genes in Tartary buckwheat, all possible FtZF-HD members in the Tartary buckwheat genome were mined using two BLAST methods, multiple FtZF-HD genes from the Tartary buckwheat genome were isolated by these two methods, and since the buckwheat genome was sequenced using a genome-wide shotgun strategy, some of these FtZF-HD genes may be redundant even though they were on different scaffolds
We identified a total of 20 ZF-HD genes, and we named them FtZHD1~FtZHD17 and FtMIF1~FtMIF3 based on their physical location on the chromosomes (Additional file 2: Table S1)
Summary
ZF-HD is a family of genes that play an important role in plant growth, development, some studies have found that after overexpression AtZHD1 in Arabidopsis thaliana, florescence advance, the seeds get bigger and the life span of seeds is prolonged, ZF-HD genes are participate in responding to adversity stress. Proteins containing transcription factors that bind to specific nucleotide sequences play an important role in different stages of plant growth, flowering, fruiting, and resistance to stress [1, 2]. A homeodomain (HD), as an NDA domain (BD), has 60 conserved amino acid sequences and encodes a homeobox (HB) gene in all eukaryotic transcription. The zinc finger, as an important motif, is widely found in a variety of regulatory proteins, can bind to DNA/RNA sequences, and participates in protein interactions [9, 10]. The zinc finger homeodomain (ZF-HD) proteins, containing HD proteins and a zinc finger related to the homeodomain, were first identified in the C4 plant Flaveria [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.