Abstract

Background Cardiovascular events are the primary cause of death for chronic kidney disease patients, which occurred via vascular calcification evolving pathogenically. Although a high level of phosphorus contributes to the induction of osteogenic differentiation of vascular smooth muscle cells (VSMCs), the role of lncRNA in this process awaits further study. Methods In this study, we systematically investigated the variation of gene expression in human VSMCs induced by high phosphorus. LncRNAs and mRNAs expression were revealed by microarray analyses of the control group and high-phosphorus (HP) group. LncRNA-mRNA co-expression network was established based on the specific lncRNA-mRNA relationships. Hierarchical clustering was used to identify a common set of regulated genes. In addition, Gene Ontology enrichment, Kyoto Gene-Encyclopedia and genomic analyses were conducted for the mRNAs differentially expressed under high phosphorus. Result RT-qPCR results confirmed that the expression of RUNX2, BMP2 and osteocalcin in HP group exhibited significant increases than in control group (p < .05). VSMC in HP group also showed higher intracellular calcium content. Volcano plots results show that 379 mRNAs and 728 lncRNAs different expressed in HP group. LncRNA-mRNA co-expression networks analysis revealed that 8 lncRNAs were the most highly connected lncRNAs. Quantitative analysis indicated that two lncRNAs were confirmed to increase significantly in the HP group. The mRNA expression of NT5E and ICAM1 were higher in group HP, while MAP3K7CL was lower than CON group (p < .05). Conclusion This study provided a working list of lncRNAs that may be relevant to osteogenic differentiation, which presents a new insights into the mechanism of vascular calcification induced by high phosphorus in VSMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.