Abstract

In this study, we aimed to develop and validate a nomogram to predicting the risk of sepsis-associated acute kidney injury (SA-AKI) in patients admitted to emergency departments (EDs). We randomly divided a retrospective dataset of 391 patients with sepsis into a 294-person training cohort and a 97-person validation cohort, and developed three predictive models using multivariate logistic regression analysis and clinical insight. No difference was observed between the three models using the DeLong test and Model 3 was selected as the risk prediction model based on the principle of least inclusion indicators. The use of vasopressor drugs, patient age, platelet count, procalcitonin, and D-dimer levels were included. The training and validation cohorts had a consistency index of 0.832 and 0.866, respectively, indicating high accuracy and stability in predicting SA-AKI risk. The area under the receiver operating characteristic curve was 0.832, showing excellent discrimination. The calibration curves for the training and validation cohorts showed excellent calibration. The decision curve and clinical impact curve analyses showed that the net clinical benefit of using the nomogram was greatest over a probability threshold of 0.05–0.90. In addition, the model showed moderate validity in predicting the 30-day survival and the incidence of major adverse renal events within 30 days. The nomogram developed for SA-AKI risk assessment in patients in EDs showed good discriminability and clinical utility. It can provide a theoretical basis for emergency physicians to prevent SA-AKI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.