Abstract
Ovate family proteins (OFPs), which are involved in aspects of plant development and growth, is a class of plant-specific transcription factors. Although OFPs have been reported in some species, little is known about their evolution, structure, fruit developmental expression, and interactions among OFP members in peach (Prunus persica). In this study, 15 peach OFP (PpOFP) genes were identified. Phylogenetic analysis showed that 716 OFPs from 32 species were divided into 15 subgroups; 10 subgroups (Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, and Ij) were composed of dicotyledonous plants only and five (IIa, IIb, IIc, IId, and IIe) were composed of monocotyledonous plants only. Structure analysis showed that the OFP genes in monocotyledonous and dicotyledonous plants had no introns. Chromosomal localization analysis showed that 15 PpOFP genes were unevenly mapped on seven chromosomes. Furthermore, eight of the 15 PpOFP genes were cloned successfully by the RT-PCR method. To some extent, eight PpOFPs were expressed in all the detected peach tissues. In addition, analysis by Y2H and BiFC technologies indicated that both PpOFP4 and PpOFP5 formed homodimers with themselves, and PpOFP5 interacted with PpOFP7 or PpOFP8 to form heterodimers. These results serve as the theoretical basis for the analysis of the biological function and regulation of peach OFP transcription factors in the growth, development and other conditions, as well as evolution studies of OFP transcription factors in higher plants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have