Abstract

BackgroundLeucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species.ResultsIn this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments.ConclusionsThis study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.

Highlights

  • Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptorlike kinase (RLK) superfamily in plants

  • Since the nodes of the phylogenetic tree based on the extracellular domains (ECDs) exhibit the best confidence of support, PtLRR-RLKs were classified into 14 subfamilies (I to XIV) (Figure 1)

  • No well-supported positions could be identified for six PtLRR-RLKs, so they were not included in the Groups Subgroups Gene number PI

Read more

Summary

Results

379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, rewatering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments

Conclusions
Background
Results and discussion
Methods
24. Dolan L
42. Adams JA
46. Holub EB
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.