Abstract

Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17–50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.

Highlights

  • All living organisms sense and conduct signals through cell surface receptors

  • Only five clusters (12 genes) could be taken as genes derived from tandem duplication, which represented about 12% (12/94) of A. trichopoda leucine-rich repeats (LRRs)-receptor-like kinases (RLKs) genes

  • Fischer et al (2016) demonstrated that the expansion rates of LRR-RLK genes are very dynamic in angiosperm and LRR-RLK genes showed some degree of expansion in most species

Read more

Summary

Introduction

All living organisms sense and conduct signals through cell surface receptors. Cellular signal transduction is mainly mediated by receptor-like kinases (RLKs), a protein superfamily. RLKs contain three functional domains: a ligand-binding extracellular domain, a membranespanning domain, and an intracellular serine/threonine kinase domain (Shiu and Bleecker, 2001). Duplication and Divergence of LRR-RLK Genes in Amborella trichopoda. The extracellular domains of RLK proteins are highly divergent. Based on the structure of the extracellular domain and phylogenetic analysis of the kinase domains (KDs), RLK proteins of Arabidopsis thaliana were divided into more than 50 families. The largest group is the leucine-rich repeat RLK family (LRRRLK)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.