Abstract

Osmanthus fragrans is an aromatic plant which is widely used in landscaping and garden greening in China. However, the process of flower opening is significantly affected by ambient temperature changes. Cell expansion in petals is the primary factor responsible for flower opening. Xyloglucan endoglycolase/hydrolase (XTH) is a cell-wall-loosening protein involved in cell expansion or cell-wall weakening. Through whole-genome analysis, 38 OfXTH genes were identified in O. fragrans which belong to the four main phylogenetic groups. The gene structure, chromosomal location, synteny relationship, and cis-acting elements prediction and expression patterns were analyzed on a genome-wide scale. The expression patterns showed that most OfXTHs were closely associated with the flower-opening period of O. fragrans. At the early flower-opening stage (S1 and S2), transcriptome and qRT-PCR analysis revealed the expression of OfXTH24, 27, 32, 35, and 36 significantly increased under low ambient temperature (19 °C). It is speculated that the five genes might be involved in the regulation of flower opening by responding to ambient temperature changes. Our results provide solid foundation for the functional analysis of OfXTH genes and help to explore the mechanism of flower opening responding to ambient temperature in O. fragrans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call