Abstract

The lagging annotation of bacterial genomes and the inherent genetic complexity of many phenotypes is hindering the discovery of new drug targets and the development of new antimicrobials and vaccines. Here we present the method Tn-seq, with which it has become possible to quantitatively determine fitness for most genes in a microorganism and to screen for quantitative genetic interactions on a genome-wide scale and in a high-throughput fashion. Tn-seq can thus direct studies in the annotation of genes and untangle complex phenotypes. The method is based on the construction of a saturated Mariner transposon insertion library. After library selection, changes in frequency of each insertion mutant are determined by sequencing of the flanking regions en masse. These changes are used to calculate each mutant's fitness. The method has been developed for the Gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and meningitis; however, due to the wide activity of the Mariner transposon, Tn-seq can be applied to many different microbial species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.