Abstract

BackgroundNITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns.ResultsA total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone−/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2–1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes.ConclusionWe identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2–1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs.

Highlights

  • NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites

  • AtNPF8.1/PTR1 [13, 14], AtNPF8.2/ PTR5 [14], and AtNPF8.3/PTR2 [15, 16] are di−/tri-peptide transporters that can mediate the process of flowering, as well as seed and root development; AtNPF4.6/ AIT1 transports abscisic acid (ABA) to regulate stomatal aperture [17, 18]; and AtNPF6.3 represses lateral root growth during low nitrate availability by promoting basipetal auxin (IAA) transport [19]

  • The length of the 199 candidate BnaNPFs ranged from 100 aa (BnaNPF1.4) to 1547 aa (BnaNPF1.9), and the molecular weight ranged from 11.57 kDa (BnaNPF1.4) to 171.42 kDa (BnaNPF1.9)

Read more

Summary

Introduction

NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Homologous proteins were conventionally named according to their first identified substrates, such as NRT (a nitrate transporter), PTR (a peptide transporter), and others [1, 6]. Thereafter, additional substrates of NRT1/PTR homologs were characterized in plants; they were recently and uniformly named as members of the NRT1/PTR family (NPF) [7]. The most well known roles of plant NPF genes (NPFs) include low- and/or high-affinity nitrate transportation. Arabidopsis AtNPF1.1/NRT1.11 and AtNPF1.2/NRT1.12 proteins are low-affinity nitrate transporters involved in redistributing nitrate into developing leaves [10], while Zea mays (maize) ZmNPF6.6 is a high-affinity nitrate transporter that can rapidly respond to exogenous nitrate supply [11]. A few NPFs display chloride or potassium transport activity: AtNPF2.4 and AtNPF2.5 mediate chloride efflux activity [21, 22], while AtNPF7.3/NRT1.5 regulates pH-dependent K+ efflux activity [23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call