Abstract
Insect pests cause substantial damage to wheat production in many wheat-producing areas of the world. Amongst these, Hessian fly (HF), Russian wheat aphid (RWA), Sunn pest (SP), wheat stem saw fly (WSSF) and cereal leaf beetle (CLB) are the most damaging in the areas where they occur. Historically, the use of resistance genes in wheat has been the most effective, environmentally friendly, and cost-efficient approach to controlling pest infestations. In this study, we carried out a genome-wide association study with 2518 Diversity Arrays Technology markers which were polymorphic on 134 wheat genotypes with varying degrees of resistance to the five most destructive pests (HF, RWA, SP, WSSF and CLB) of wheat, using mixed linear model (MLM) analysis with population structure as a covariate. We identified 26 loci across the wheat genome linked to genes conferring resistance to these pests, of which 20 are potentially novel quantitative trait loci with significance values which ranged between 5 × 10−3 and 10−11. We used an in silico approach to identify probable candidate genes at some of the genomic regions and found that their functions varied from defense response with transferase activity to several genes of unknown function. Identification of potentially new loci associated with resistances to pests would contribute to more rapid marker-aided incorporation of new and diverse genes to develop new varieties with improved resistance against these pests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.