Abstract
BackgroundIncreased circulating levels of hemostatic factors as well as anemia have been associated with increased risk of cardiovascular disease (CVD). Known associations between hemostatic factors and sequence variants at genes encoding these factors explain only a small proportion of total phenotypic variation. We sought to confirm known putative loci and identify novel loci that may influence either trait in genome-wide association and linkage analyses using the Affymetrix GeneChip 100K single nucleotide polymorphism (SNP) set.MethodsPlasma levels of circulating hemostatic factors (fibrinogen, factor VII, plasminogen activator inhibitor-1, von Willebrand factor, tissue plasminogen activator, D-dimer) and hematological phenotypes (platelet aggregation, viscosity, hemoglobin, red blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration) were obtained in approximately 1000 Framingham Heart Study (FHS) participants from 310 families. Population-based association analyses using the generalized estimating equations (GEE), family-based association test (FBAT), and multipoint variance components linkage analyses were performed on the multivariable adjusted residuals of hemostatic and hematological phenotypes.ResultsIn association analysis, the lowest GEE p-value for hemostatic factors was p = 4.5*10-16 for factor VII at SNP rs561241, a variant located near the F7 gene and in complete linkage disequilibrium (LD) (r2 = 1) with the Arg353Gln F7 SNP previously shown to account for 9% of total phenotypic variance. The lowest GEE p-value for hematological phenotypes was 7*10-8 at SNP rs2412522 on chromosome 4 for mean corpuscular hemoglobin concentration. We presented top 25 most significant GEE results with p-values in the range of 10-6 to 10-5 for hemostatic or hematological phenotypes. In relating 100K SNPs to known candidate genes, we identified two SNPs (rs1582055, rs4897475) in erythrocyte membrane protein band 4.1-like 2 (EPB41L2) associated with hematological phenotypes (GEE p < 10-3). In linkage analyses, the highest linkage LOD score for hemostatic factors was 3.3 for factor VII on chromosome 10 around 15 Mb, and for hematological phenotypes, LOD 3.4 for hemoglobin on chromosome 4 around 55 Mb. All GEE and FBAT association and variance components linkage results can be found at ConclusionUsing genome-wide association methodology, we have successfully identified a SNP in complete LD with a sequence variant previously shown to be strongly associated with factor VII, providing proof of principle for this approach. Further study of additional strongly associated SNPs and linked regions may identify novel variants that influence the inter-individual variability in hemostatic factors and hematological phenotypes.
Highlights
Increased circulating levels of hemostatic factors as well as anemia have been associated with increased risk of cardiovascular disease (CVD)
Using genome-wide association methodology, we have successfully identified a single nucleotide polymorphism (SNP) in complete linkage disequilibrium (LD) with a sequence variant previously shown to be strongly associated with factor VII, providing proof of principle for this approach
Among individuals who were included in the genotyping and had at least one hemostatic factor or platelet aggregation phenotype measured at examination cycle five, 52% were women, mean age was 52 years, and 6% had prevalent CVD
Summary
Increased circulating levels of hemostatic factors as well as anemia have been associated with increased risk of cardiovascular disease (CVD). By comprehensively characterizing common genetic variation at each of these loci, we have recently clarified that cis-acting variants, in sum, explain a modest proportion of phenotypic variation, ranging from 1% – 10% [16,17]. For hematological variables such as hematocrit and hemoglobin, sequence variation in the major hemoglobin genes is well described to be associated with anemias, such as beta- and alpha-thalassemia, and sickle cell anemia [18,19,20]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have