Abstract
Lactation is an economically and biologically important phase in the life cycle of sows. Short generation intervals in nucleus herds and low heritability of traits associated with lactation along with challenges associated with collecting accurate lactation performance phenotypes emphasize the importance of using genomic tools to examine the underlying genetics of these traits. We report the first genomewide association study (GWAS) on traits associated with lactation and efficiency in 2 lines of Yorkshire pigs that were divergently selected for residual feed intake during grow-finish phase. A total of 862 farrowing records from 2 parities were analyzed using a Bayesian whole genome variable selection model (Bayes B) to locate 1-Mb regions that were most strongly associated with each trait. The GWAS was conducted separately for parity 1 and 2 records. Marker-based heritabilities ranged from 0.03 to 0.39 for parity 1 traits and from 0.06 to 0.40 for parity 2 traits. For all traits studied, around 90% of genetic variance came from a large number of genomic regions with small effects, whereas genomic regions with large effects were found to be different for the same trait measured in parity 1 and 2. The highest percentage of genetic variance explained by a 1-Mb window for each trait ranged from 0.4% for feed intake during lactation to 4.2% for back fat measured at farrowing in parity 1 sows and from 0.2% for lactation feed intake to 5.4% for protein mass loss during lactation in parity 2 sows. A total of thirteen 1-Mb nonoverlapping windows were found to explain more than 1.5% of genetic variance for either a single trait or across multiple traits. These 1-Mb windows were on chromosomes 2, 3, 6, 7, 8, 11, 14, 15, 17, and 18. The major positional candidate genes within 1 Mb upstream and downstream of these windows were , (SSC2), (SSC6) (SSC7), (SSC8), (SSC11), (SSC14), (SSC17). Further validation studies on larger populations are required to validate these findings and to improve our understanding of the biology and complex genetic architecture of traits associated with sow lactation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.