Abstract

BackgroundMembers of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones. They are involved in protein folding, assembly, stabilization, activation, and degradation in many normal cellular processes and under stress conditions. Unlike many other well-characterized molecular chaperones, Hsp90s play key roles in signal transduction, cell-cycle control, genomic silencing, and protein trafficking. However, no systematic analysis of genome organization, gene structure, and expression compendium has been performed in the Populus model tree genus to date.ResultsWe performed a comprehensive analysis of the Populus Hsp90 gene family and identified 10 Populus Hsp90 genes, which were phylogenetically clustered into two major groups. Gene structure and motif composition are relatively conserved in each group. In Populus trichocarpa, we identified three paralogous pairs, among which the PtHsp90-5a/PtHsp90-5b paralogous pair might be created by duplication of a genome segment. Subcellular localization analysis shows that PtHsp90 members are localized in different subcellular compartments. PtHsp90-3 is localized both in the nucleus and in the cytoplasm, PtHsp90-5a and PtHsp90-5b are in chloroplasts, and PtHsp90-7 is in the endoplasmic reticulum (ER). Furthermore, microarray and semi-quantitative real-time RT-PCR analyses show that a number of Populus Hsp90 genes are differentially expressed upon exposure to various stresses.ConclusionsThe gene structure and motif composition of PtHsp90s are highly conserved among group members, suggesting that members of the same group may also have conserved functions. Microarray and RT-PCR analyses show that most PtHsp90s were induced by various stresses, including heat stress. Collectively, these observations lay the foundation for future efforts to unravel the biological roles of PtHsp90 genes.

Highlights

  • Members of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones

  • The number of Hsp90 genes in P. trichocarpa genome is in consistency with the ratio of 1.4-1.6 putative poplar homologs for each Arabidopsis gene according to comparative genomics studies [17]

  • We performed a comprehensive analysis of the Populus Hsp90 gene family covering phylogeny, chromosomal location, gene structure, subcellular localization, expression profiling, and heat stress responses

Read more

Summary

Introduction

Members of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones They are involved in protein folding, assembly, stabilization, activation, and degradation in many normal cellular processes and under stress conditions. Heat shock proteins (Hsps) are responsible for protein folding, assembly, translocation, and degradation in many normal cellular processes They stabilize proteins and membranes, and can assist in protein refolding under stress conditions. Plant Hsps are classified into five families according to their molecular size: Hsp100, Hsp, Hsp, Hsp, and small Hsps (sHsps) They have been well characterized in a few model plants such as the tomato, Arabidopsis, and rice [3,4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call