Abstract

BackgroundCytoplasmic male sterility in flowering plants is a convenient way to use heterosis via hybrid breeding and may be restored by nuclear restorer-of-fertility (Rf) genes. In most cases, Rf genes encoded pentatricopeptide repeat (PPR) proteins and several Rf genes are present in clusters of similar Rf-PPR-like (RFL) genes. However, the Rf genes in cotton were not fully characterized until now.ResultsIn total, 35 RFL genes were identified in G. hirsutum, 16 in G. arboreum, and 24 in G. raimondii. Additionally, four RFL-rich regions were identified; the RFL-rich region in Gh_D05 is the probable location of Rf-PPR genes in cotton and will be studied further in the future. Furthermore, an insertion sequence was identified in the promoter sequence of Gh_D05G3392 gene in the restorer line, as compared with the CMS-D2 line and maintainer lines. An InDel-R marker was then developed and could be used to distinguish the restorer line carrying Rf1 from other genotypes without the Rf1 allele.ConclusionIn this study, genome-wide identification and analysis of RFL genes have identified the candidate Rf-PPR genes for CMS in Gossypium. The identification and analysis of RFL genes and sequence variation analysis will be useful for cloning Rf genes in the future and also for three-line hybrid breeding in cotton.

Highlights

  • Cotton is an important fiber crop worldwide

  • Genome-wide identification and chromosomal distribution of RFL genes in Gossypium To identify potential RFL genes in the G. hirsutum, G. arboreum, and G. raimondii protein databases, the sequence of Rf-PPR592 from P. hybrida was used for BLAST searching against the three cotton genomes, as per the previous study by Fujii et al (2011)

  • 75 RFL genes were identified, of which were obtained from G. hirsutum, 16 from G. arboreum, and 24 from G. raimondii

Read more

Summary

Introduction

Cotton is an important fiber crop worldwide. Improving cotton yield and quality is becoming critical to meet industrial demands. Hybrid breeding is an important strategy to increase yield and quality by efficiently exploiting heterosis and has been applied to many important crops, including rice, maize, and cotton (Huang et al 2016). In China, more than 90% of cotton hybrids are produced by artificial emasculation and pollination (Yu et al 2016). It is time-consuming, labor-intensive, and costly and the purity of hybrid seeds cannot be guaranteed, representing an important limiting factor for hybrid seed production. Cytoplasmic male sterility (CMS) is an indispensable resource for commercial hybrid seed production (Schnable and Wise 1998; Hanson and Bentolila 2004; Chase 2007; Pelletier and Budar 2006). The Rf genes in cotton were not fully characterized until now

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.