Abstract

Cotton is the most important natural fiber used in textiles. Breeding for "three-lines", i.e., cytoplasmic male sterility (CMS)-based sterile (A), maintainer (B), and restorer (R) line, is a promising approach to harness hybrid vigor in cotton. Pentatricopeptide repeat (PPR) protein-encoding genes play an important role in plant growth and development including restoration of CMS plants to male fertility. However, PPRs, especially those contributing to CMS and fiber development, remain largely unknown in cotton. In this study, a genome-wide identification and characterization of PPR gene family in four Gossypium species with genome sequences (G. arboreum, G. raimondii, G. hirsutum, and G. barbadense) were performed, and expressed PPR genes in developing floral buds, ovules, and fibers were compared to identify possible PPRs related to CMS restoration and fiber development. A total of 539, 558, 1032, and 1055 PPRs were predicted in the above four species, respectively, which were further mapped to chromosomes for a synteny analysis. Through an RNA-seq analysis, 86% (882) PPRs were expressed in flowering buds of upland cotton (G. hirsutum); however, only 11 and 6 were differentially expressed (DE) between restorer R and its near-isogenic (NI) B and between R and its NI A line, respectively. Another RNA-seq analysis identified the expression of only 54% (556) PPRs in 0 and 3day(s) post-anthesis (DPA) ovules and 24% (247) PPRs in 10 DPA fibers; however, only 59, 6, and 27 PPRs were DE in 0 and 3 DPA ovules, and 10 DPA fibers between two backcross inbred lines (BILs) with differing fiber length, respectively. Only 2 PPRs were DE between Xuzhou 142 and its fiberless and fuzzless mutant. Quantitative RT-PCR analysis confirmed the validity of the RNA-seq results for the gene expression pattern. Therefore, only a very small number of PPRs may be associated with fertility restoration of CMS and genetic differences in fiber initiation and elongation. These results lay a foundation for understanding the roles of PPR genes in cotton, and will be useful in the prioritization of candidate PPR gene functional validation for cotton CMS restoration and fiber development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call