Abstract
Background/Objectives: Chitinases, enzymes belonging to the glycoside hydrolase family, play a crucial role in plant growth and stress response by hydrolyzing chitin, a natural polymer found in fungal cell walls. This study aimed to identify and analyze the maize chitinase gene family, assessing their response to various biotic and abiotic stresses to understand their potential role in plant defense mechanisms and stress tolerance. Methods: We employed bioinformatics tools to identify 43 chitinase genes in the maize B73_V5 genome. These genes were characterized for their chromosomal positions, gene and protein structures, phylogenetic relationships, functional enrichment, and collinearity. Based on previous RNA-seq data, the analysis assessed the expression patterns of these genes at different developmental stages and under multiple stress conditions. Results: The identified chitinase genes were unevenly distributed across maize chromosomes with a history of tandem duplications contributing to their divergence. The ZmChi protein family was predominantly hydrophilic and localized mainly in chloroplasts. Expression analysis revealed that certain chitinase genes were highly expressed at specific developmental stages and in response to various stresses, with ZmChi31 showing significant responsiveness to 11 different abiotic and biotic stresses. Conclusions: This study provides new insights into the role of chitinase genes in maize stress response, establishing a theoretical framework for exploring the molecular basis of maize stress tolerance. The identification of stress-responsive chitinase genes, particularly ZmChi31, offers potential candidates for further study in enhancing maize resistance to environmental challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.