Abstract
Chitinolytic enzymes are important pathogenesis and stress related proteins. We identified 27 putative genes encoding endochitinases in the maize genome via in silico techniques and four exochitinases. Only seven of the endochitinases and segments of the exochitinases were heretofore known. The endochitinases included members of family 19 chitinases (classes I-IV of PR3, II of PR4) and members of family 18 chitinases (class III of PR8). Some similar enzymes were detected on adjacent regions of the same chromosome, and seem to result from duplication events. Most of the genes expressed were identified from EST libraries from plants exposed to biotic or abiotic stresses but also from libraries from tissues not exposed to stresses. We isolated proteins from seedlings of maize in the presence or absence of the symbiotic root colonizing fungus Trichoderma harzianum strain T22, and analyzed the activity of chitinolytic enzymes using an in-gel activity assay. The activity bands were identified by LC/MS/MS using the database from our in silico study. The identities of the enzymes changed depending on whether or not T22 was present. One activity band of about 95 kDa appeared to be a heterodimer between an exochitinase and any of several different endochitinases. The identity of the endochitinase component appeared to be dependent upon treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.