Abstract

Cyclic nucleotide-gated ion channels (CNGCs) are channel proteins for calcium ions, and have been reported to play important roles in regulating survival and environmental response of various plants. However, little is known about how the CNGC family works in Gossypium. In this study, 173 CNGC genes, which were identified from two diploid and five tetraploid Gossypium species, were classified into four groups by phylogenetic analysis. The collinearity results demonstrated that CNGC genes are integrally conservative among Gossypium species, but four gene losses and three simple translocations were detected, which is beneficial to analyzing the evolution of CNGCs in Gossypium. The various cis-acting regulatory elements in the CNGCs' upstream sequences revealed their possible functions in responding to multiple stimuli such as hormonal changes and abiotic stresses. In addition, expression levels of 14 CNGC genes changed significantly after being treated with various hormones. The findings in this study will contribute to understanding the function of the CNGC family in cotton, and lay a foundation for unraveling the molecular mechanism of cotton plants' response to hormonal changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call