Abstract

MYB transcription factors are one of the largest transcription factor families in plants, and they regulate numerous biological processes. Red algae are an important taxonomic group and have important roles in economics and research. However, no comprehensive analysis of the MYB gene family in any red algae, including Pyropia yezoensis, has been conducted. To identify the MYB gene members of Py. yezoensis, and to investigate their family structural features and expression profile characteristics, a study was conducted. In this study, 3 R2R3-MYBs and 13 MYB-related members were identified in Py. yezoensis. Phylogenetic analysis indicated that most red algae MYB genes could be clustered with green plants or Glaucophyta MYB genes, inferring their ancient origins. Synteny analysis indicated that 13 and 5 PyMYB genes were orthologous to Pyropia haitanensis and Porphyra umbilicalis, respectively. Most Bangiaceae MYB genes contain several Gly-rich motifs, which may be the result of an adaptation to carbon limitations and maintenance of important regulatory functions. An expression profile analysis showed that PyMYB genes exhibited diverse expression profiles. However, the expression patterns of different members appeared to be diverse, and PyMYB5 was upregulated in response to dehydration, low temperature, and Pythium porphyrae infection. This is the first comprehensive study of the MYB gene family in Py. Yezoensis and it provides vital insights into the functional divergence of MYB genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call