Abstract
In order to develop a rice population with improved important traits such as flowering time, we developed 2,911 M2 targeting-induced local lesions in genomes (TILLING) lines by irradiating rice seeds with γ-rays. In all, 15 M3 lines were obtained from 3 different M2 lines that exhibited an early-maturing phenotype: these plants matured approximately 25 days faster than wild-type (WT) plants. To identify genome-wide DNA polymorphisms, we performed whole-genome resequencing of both the plant types, i.e., WT and early-maturing TILLING 1 (EMT1), and obtained mapped reads of 118,488,245 bp (99.53 %) and 128,489,860 bp (99.72 %), respectively; Nipponbare was used as the reference genome. We obtained 63,648 and 147,728 single nucleotide polymorphisms (SNPs) and 33,474 and 31,082 insertions and deletions (InDels) for the WT and EMT1, respectively. Interestingly, there was a higher number of SNPs (2.6-fold) and slightly lower number of InDels (0.9-fold) in EMT1 than in WT. The expression of at least 202 structurally altered genes was changed in EMT1, and functional enrichment analysis of these genes revealed that their molecular functions were related to flower development. These results might provide a critical insight into the regulatory pathways of rice flowering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have