Abstract

The beef tenderization process during the post-mortem period is one of the most important sensorial attributes and it is well-established. The aim of this study was to identify the genetic contribution pattern to meat tenderness at 7-(LMD7), 14-(LMD14), and 21-(LMD21) days post-mortem. The heritabilities for LMD7 (0.194), LMD14 (0.142) and LMD21 (0.048) are well established in the population evaluated here. However, its genetic contribution in terms of genomic candidate regions is still poorly understood. Tenderness was measured in the Longissiums thoracis using Warner-Bratzler shear force in the three post-mortem periods. A total of 4323 crossbred beef cattle were phenotyped and genotyped using the Illumina BovineSNP50K. The percentage of the total genetic variance was estimated using the weighted single-step genomic best linear unbiased prediction method. The main candidate windows for LMD7 were associated with proteolysis of myofibrillar structures and the weakening endomysium and perimysium. Candidate windows for LMD14 and LMD21 were mapped in bovine QTLs for body composition, height and growth. Results presented herein highlight, the largest contribution of proteolysis related processes before 14-days post-mortem and body composition characteristics in later stages for meat tenderness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call