Abstract
The accuracy of genomic predictions can be used to assess the utility of dense marker genotypes for genetic improvement of beef efficiency traits. This study was designed to test the impact of genomic distance between training and validation populations, training population size, statistical methods, and density of genetic markers on prediction accuracy for feed efficiency traits in multibreed and crossbred beef cattle. A total of 6,794 beef cattle data collated from various projects and research herds across Canada were used. Illumina BovineSNP50 (50K) and imputed Axiom Genome-Wide BOS 1 Array (HD) genotypes were available for all animals. The traits studied were DMI, ADG, and residual feed intake (RFI). Four validation groups of 150 animals each, including Angus (AN), Charolais (CH), Angus-Hereford crosses (ANHH), and a Charolais-based composite (TX) were created by considering the genomic distance between pairs of individuals in the validation groups. Each validation group had 7 corresponding training groups of increasing sizes ( = 1,000, 1,999, 2,999, 3,999, 4,999, 5,998, and 6,644), which also represent increasing average genomic distance between pairs of individuals in the training and validations groups. Prediction of genomic estimated breeding values (GEBV) was performed using genomic best linear unbiased prediction (GBLUP) and Bayesian method C (BayesC). The accuracy of genomic predictions was defined as the Pearson's correlation between adjusted phenotype and GEBV (), unless otherwise stated. Using 50K genotypes, the highest average achieved in purebreds (AN, CH) was 0.41 for DMI, 0.34 for ADG, and 0.35 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.21 for ADG, and 0.25 for RFI. Similarly, when imputed HD genotypes were applied in purebreds (AN, CH), the highest average was 0.14 for DMI, 0.15 for ADG, and 0.14 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.22 for ADG, and 0.24 for RFI. The of GBLUP predictions were greatly reduced with increasing genomic average distance compared to those from BayesC predictions. The results indicate that 50K genotypes, used with BayesC, are more effective for predicting GEBV in purebred cattle. Imputed HD genotypes found utility when dealing with composites and crossbreds. Formulation of a fairly large training set for genomic predictions in beef cattle should consider the genomic distance between the training and target populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.