Abstract
The focus on increasing wheat (Triticum aestivum L.) grain yield at the expense of grain quality and nutrient accumulation can lead to shortages in macronutrient minerals, which are dangerous for human health. This is important, especially in nations where bread wheat is used in most daily dietary regimens. One efficient way to guarantee nutritional security is through biofortification. A genome-wide association mapping approach was used to investigate the genetic basis of the differences in macronutrient mineral accumulation in wheat grains. N, P, K, Na, Ca, and Mg concentrations were measured after a panel of 200 spring wheat advanced lines from the Wheat Association Mapping Initiative were cultivated in the field. The population exhibited a wide range of natural variations in macronutrient minerals. The minerals were found to have strong positive correlations except for magnesium, which had negative correlation patterns with N, P, and K. Furthermore, there were negative correlations between N and each of Ca and Na. Remarkably, genotypes with large yields contained moderate levels of critical metals. Of the 148 significant SNPs above −log10(P) = 3, 29 had −log10(P) values greater than 4. Four, one, and nineteen significant SNPs with a −log10(P) between 4 and 5.8 were associated with N and mapped on chromosomes 1A, 1B, and 1D, respectively. Three significant SNPs on chromosome A3 were associated with K. Two significant SNPs were associated with Ca and Na and mapped on chromosomes B3 and A4, respectively. Our findings offer crucial information about the genetic underpinnings of nutritional mineral concentration augmentation, which can guide future breeding research to enhance human nutrition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have