Abstract

Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30–60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.

Highlights

  • The adrenal steroid hormone cortisol plays a vital role in adaptation to environmental stress

  • The results reveal that the major genetic influence on plasma cortisol is mediated by variations in the binding capacity of corticosteroid binding globulin (CBG)

  • This is determined by differences in the circulating concentrations of CBG and in the immunoreactivity of its ‘reactive centre loop’, potentially influencing binding affinity for cortisol and the stability of CBG and the tissue delivery of cortisol

Read more

Summary

Introduction

The adrenal steroid hormone cortisol plays a vital role in adaptation to environmental stress. Lower cortisol associates with immunological abnormalities [8], post-traumatic stress disorder (PTSD) [9], and obesity [1] (the inverse association with obesity is likely due to increased metabolic clearance of cortisol and confounds the positive association of cortisol with other cardiovascular risk factors, explaining some inconsistencies in the associations of cortisol with ‘metabolic syndrome’ [1]) Mechanisms underlying these associations remain uncertain, with most investigators suggesting abnormal central control of the HPA axis [1,10,11]. Variations in total CBG concentrations have been associated with features of metabolic syndrome [12,13], this does not account entirely for associations of total plasma cortisol with other quantitative traits [5,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call