Abstract

BackgroundGene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data.ResultsWe generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation.ConclusionsThis study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.

Highlights

  • Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes

  • In order to investigate the relationship between DNA methylation and transcription across the entire honeybee genome, we generated genome-wide transcription data using RNA deep sequencing data (RNA-seq) and analyzed them in conjunction with available genomewide DNA methylation data from honeybees [18]

  • While we cannot say whether DNA methylation causes splicing events, it is tempting to surmise that DNA methylation in exons can mark the chromatin for modifications that reduce the chance of exon-skipping, leading to a higher rate of exon inclusion during the process of transcription

Read more

Summary

Introduction

Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. It was revealed that the functional targets of DNA methylation vary across species with intragenic DNA methylation (inside gene bodies) being generally more conserved than promoter methylation [5,7,8,9,10,11,12,13,14,15]. While it is known that intragenic DNA methylation frequently occurs within actively transcribed genes [7,8,11,12,13], its biological functions remain elusive and may vary depending on the organism and the exact nature of the DNA methylation patterns

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.