Abstract
Abiotic stresses e.g., cold, heat, and salinity affect the quality and yield of Rosa chinensis, a well-known ornamental and medicinal plant. Previously, several attempts have been made to identify the genes that confer resistance to oxidative stressors. Superoxide-dismutase (SOD) is a crucial member of the class metalloenzyme that responds to abiotic stresses and protects plants by countering the reactive-oxygen species (ROS). In this genome-wide association study, the SOD gene family has been investigated in R. chinensis. Seven SOD genes, including three Cu/ZnSODs, two MnSODs, and two FeSODs were identified. Phylogenetic analysis revealed that RcSODs are divided into three clades; (i) CSDs (Cu/ZnSODs) (ii) FSDs (FeSODs) and MSDs (MnSODs). Most of the RcSODs exhibited different exons/introns distribution patterns. Motifs 3 and 5 are conserved in all RcSODs genes. The RNA-seq data analysis and qRT-PCR-based expression profiling indicated that RcSODs exhibit diverse responses under salt stress conditions. The RcCSD1, RcCSD3, and RcFSD3 are significantly up-regulated under salt stress conditions in roots and down-regulated in leaves. This data provides valuable information for further application and function of SODs in R. chinensis under abiotic stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.