Abstract

BackgroundAbiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa.ResultsA total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR.ConclusionWe identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement.

Highlights

  • Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica)

  • We propose that these Superoxide dismutase (SOD) genes be named copper/zinc SOD (CSD), manganese SOD (MSD) and Iron superoxide dismutase (FSD)

  • In our study, the reported B. juncea and B. rapa genomes were analyzed for the identification of SOD genes

Read more

Summary

Introduction

Heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Six interrelated species share major portion of this family, amongst which three are diploids: Brassica rapa (AA 2n = 20, Chinese cabbage, turnip), B. nigra (BB 2n = 16, Black mustard), B. oleracea (CC 2n = 18, Cauliflower, broccoli), the other three species are allopolyploids formed by interspecies hybridization of the diploid species, namely, B. napus (AACC 2n = 38, oilseed rape or rapeseed), B. juncea (AABB 2n = 36, Indian or brown mustard) and B. carinata (BBCC 2n = 34, Ethiopian mustard) [1, 2] These crops are mainly grown for oil, condiments, vegetables and fodder [3].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call