Abstract

BackgroundHybrid vigour (heterosis) has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield. The molecular basis of hybrid vigour is not fully understood. Previous studies have suggested that epigenetic systems could play a role in heterosis.ResultsIn this project, we investigated genome-wide patterns of four histone modifications in Arabidopsis hybrids in germinating seeds. We found that although hybrids have similar histone modification patterns to the parents in most regions of the genome, they have altered patterns at specific loci. A small subset of genes show changes in histone modifications in the hybrids that correlate with changes in gene expression. Our results also show that genome-wide patterns of histone modifications in geminating seeds parallel those at later developmental stages of seedlings.ConclusionLer/C24 hybrids showed similar genome-wide patterns of histone modifications as the parents at an early germination stage. However, a small subset of genes, such as FLC, showed correlated changes in histone modification and in gene expression in the hybrids. The altered patterns of histone modifications for those genes in hybrids could be related to some heterotic traits in Arabidopsis, such as flowering time, and could play a role in hybrid vigour establishment.

Highlights

  • Hybrid vigour has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield

  • Analyses of the distributions of histone marks in genes and their surrounding regions show that H3K4me3 and H3K9ac are enriched downstream of the transcription start sites of protein-coding genes, while H3K27me3 occurs along the gene body (Fig. 1a and c)

  • The results show that histone modification patterns in germinating seeds parallel those in seedlings at later stages [22,23,24]

Read more

Summary

Introduction

Hybrid vigour (heterosis) has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield. The molecular basis of hybrid vigour is not fully understood. Heterosis, is a phenomenon where the progeny derived from crosses between two accessions of a species have increased performance compared to their parents. Hybrids have been used in agriculture for over a century, achieving increased seed yields in crops, such as maize [1] and rice [2]. In Arabidopsis, hybrids generated by crosses between different ecotypes show strong heterosis in many traits, especially in vegetative biomass and in seed yield [3,4,5].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.