Abstract
Irpex lacteus is an edible and medicinal macrofungus with significant biological activity and broad pharmaceutical prospects that has received increasing attention in recent years. Although it is an important resource for macrofungi, knowledge of it remains limited. In this study, we sequenced, de novo assembled, and annotated the whole genome of I. lacteus using a PacBio Sequel II sequencer. The assembled 41.83 Mb genome contains 13,135 predicted protein-coding genes, 83.44% of which have searchable sequence similarity to other genes available in public databases. Using genome-based bioinformatics analysis, we identified 556 enzymes involved in carbohydrate metabolism and 103 cytochrome P450 proteins. Genome annotation revealed genes for key enzymes responsible for the biosynthesis of secondary metabolites, such as terpenoids and polyketides. Among them, we identified 14 terpene synthases, 8 NRPS-like enzymes, and 4 polyketide synthases (PKS), as well as 2 clusters of biosynthetic genes presumably related to terpene synthesis in I. lacteus. Gene family analysis revealed that the MYB transcription factor gene family plays an important role in the growth and development of I. lacteus. This study further enriches the genomic content of I. lacteus, provides genomic information for further research on the molecular mechanism of I. lacteus, and promotes the development of I. lacteus in the fields of drug research and functional food production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.